
Transparent Shared Memory
Communications with eBPF

Cong Wang, A K M Fazla Mehrab
System Technologies & Engineering, ByteDance

Overview
● Problem: The overhead of TCP communication is high for co-locating applications
● Proposal:

• Bypass TCP stack at socket layer
• Use shared memory as the communication channel
• Use eBPF to maintain application transparency

● Result:
• We observed ~12% throughput improvement for container so far
• There is still room for improvement

2/31

1. Background
2. Problem statement
3. State-of-the-art
4. Proposed solution
5. Summary

Shared Memory
● Shared memory is the most effective communication we could achieve in the compute system
● Shared memory is common for IPC in OS
● For networking, RDMA technology implements this by allowing one system to share the memory of

another system directly without involving the CPU
● Could we leverage shared memory for TCP in a single node?

4/31

Why still TCP?
● TCP/IP is now the de facto standard for communication in data centers and across the internet as a

whole
● It is the backbone of networking in large data centers due to its reliability, scalability, and

compatibility with a wide range of hardware and software systems
● TCP is the protocol of choice for applications in data centers that require reliable,

connection-oriented communication over IP networks
● Its widespread adoption and support across various programming languages and platforms make it

well-suited for facilitating communication between applications
● TCP socket API is the de facto standard API for networking applications

5/31

1. Background
2. Problem statement
3. State-of-the-art
4. Proposed solution
5. Summary

Problem Statement

TCP stack has so
many layers

Application

Socket Layer

TCP Layer

IP Layer

Device Layer

7/31

Loopback

Co-locating
applications need to
traverse stack twice

Client Socket Server Socket

TCP/IP TCP/IP

Loopback

8/31

Co-locating Containers

Same scenario for
containers

Container

Server Socket

TCP/IP

veth

Container

Client Socket

TCP/IP

9/31

Co-resident VMs

Overhead is even
higher due to
virtual devices

VM

Server Socket

TCP/IP

Hypervisor

VM

Client Socket

TCP/IP

10/31

1. Background
2. Problem statement
3. State-of-the-art
4. Proposed solution
5. Summary

State-of-the-art
● Unix Domain Socket
● Virtual Socket
● RDMA
● SMC-R

12/31

Unix Domain Socket
● A method for inter-process communication (IPC) in Unix-like systems
● No stack, faster than TCP/IP for local communication
● Uses filesystem paths for socket addressing
● Supports bidirectional, streams or datagrams
● Utilized by system and user-level applications
● Operates in both connection-oriented and connectionless modes.
● Requires application modification

13/31

Virtual Socket
● Communication technology employed in virtualized and distributed environments
● Enables IPC between different VMs or containers
● Allows for reduced overhead and latency compared to traditional network-based communication
● Utilizes the host system's resources, bypassing the regular network stack
● Facilitates efficient, high-speed data transmission between distributed components
● Integral to microservices architecture and container orchestration platforms like Kubernetes
● Requires application modification

14/31

RDMA
● Bypasses the OS: RDMA allows data to be transferred directly between the RAM of different

computers without CPU intervention, bypassing the OS and kernel entirely
● Low Latency and High Throughput: Direct data transfers significantly reduce latency and increase

throughput, ideal for performance-critical applications
● Zero-Copy Networking: Enables zero-copy networking behavior, reducing the number of data

copies between applications and the network stack
● RDMA-Capable NICs: Requires network interface cards that support RDMA, such as those

implementing InfiniBand, RoCE (RDMA over Converged Ethernet), or iWARP (Internet Wide Area
RDMA Protocol)

● Verbs API: RDMA offers a low-level "verbs" programming API that allows for fine-grained control
over RDMA operations

● Complexity: RDMA programming and setup can be complex and may require a deep understanding
of networking concepts

15/31

SMC-R
● RDMA-based: Utilizes RDMA for efficient data transfer, enabling high-speed communication

between systems by bypassing the Linux kernel network stack
● Low Latency: Aims to reduce network latency compared to traditional TCP/IP, which is beneficial for

latency-sensitive applications
● TCP-compatibility: Designed to be compatible with existing TCP/IP applications, allowing them to

take advantage of RDMA-enabled hardware via LD_PRELOAD
● Fallback to TCP: If RDMA is not available or if setup negotiation fails, SMC-R automatically falls

back to standard TCP/IP communication
● Shared Memory: Establishes a shared memory space between communication endpoints, allowing

for efficient data exchange
● RDMA-Capable NICs: Requires network interfaces that support RDMA, such as those with

InfiniBand or RoCE (RDMA over Converged Ethernet) capabilities

16/31

1. Background
2. Problem statement
3. State-of-the-art
4. Proposed solution
5. Summary

Our Idea
● Bypass TCP stack layers

○ To avoid overheads
○ With shared memory
○ Ideally zero-copy

● Maintain application transparency
○ To avoid specializations
○ To support all existing applications

● Inspirations from SMC
○ Exchange information during TCP 3-way handshake

● Inspirations from eBPF
○ Sockops
○ Sockmap

18/31

Our Idea

Server SocketServer SocketClient Socket

Shared Memory

TCP/IPTCP/IP

Establish
3-way handshake

19/31

Non-VM Case
● Breaking it down into pieces:

○ Hijacking 3-way handshake: sockops
○ Communication channel: sockmap (sk_msg)
○ sendmsg() hook: BPF_SK_MSG_VERDICT for redirection

● It turns out Cilium already has a similar implementation: sockops-enable option
● Surprisingly, its performance is much worse than TCP!!

20/31

Cilium Socket Acceleration
● TCP is not as bad as it appears
● Linux TCP/IP stack has been optimized for decades, batching is excellent
● sk_msg is not optimized at all, not as sophisticated as skb at batching

○ For example, batching in release_sock()
● Sender needs to acquire receiver’s sock lock for accounting purpose
● Sock lock becomes the source of all evil
● We have an idea for optimization and Zijian Zhang already finished preliminary work

21/31

Optimizing sk_msg

lock_sock()
move skmsg to destination
Wake up sleeper
unlock_sock() (woken up)

lock_sock()
check skmsg queue
read skmsg
unlock_sock()
(sleep)

Sender Receiver

.

.

.

(woken up)
lock_sock()
check skmsg queue
read skmsg
unlock_sock()
(sleep)

22/31

lock_sock()
move skmsg to destination
Wake up sleeper
unlock_sock()

Optimizing sk_msg

 queue skmsg
schedule worker

(woken up)
lock_sock()
move skmsg to destination
unlock_sock()
Wake up sleeper
(sleep)

(woken up)
lock_sock()
check skmsg queue
read skmsg
unlock_sock()
(sleep)

Sender Worker Receiver

(woken up)
lock_sock()
move skmsg to destination
unlock_sock()
Wake up sleeper
(sleep)

 queue skmsg
schedule worker

 queue skmsg
schedule worker

.

.

. (woken up)
lock_sock()
check skmsg queue
read skmsg
unlock_sock()
(sleep)

23/31

Evaluation

24/31 TSMC→Transparent Shared Memory Communications

Higher is better Lower is better

12%
29%

VM Case
● Breaking it down into pieces:

○ Hijacking 3-way handshake: sockops with TCP option
○ Communication channel: IVSHMEM
○ sendmsg() and recvmsg() hooks: struct_ops for struct proto

● Security assumptions:
○ VMs run known workloads in our datacenter
○ Therefore, we trust all VMs running on the same host

● No prototype implementation available yet

25/31

VM case: overview
VM 1

Client
Socket

TCP/IP

Tx

3-way handshake
● Host IP
● Tx and Rx offset

Rx

Tx

Rx

VM create
● Host IP
● Chunk offset and size

IVSHMEM on host

26/31

Chunk

Client
Socket

eBPF map

Tuple Ring
IPs+Ports Offset

VM 2

TCP/IP

Server
Socket

1 2 3

4 5 6

Sockops
● eBPF programs for handshake

○ Hook during SYN and ACK
○ Create Tx and Rx rings
○ Insert a new TCP option for discovery: Host IP and Ring info
○ Clean up rings if not on the same host

27/31

IVSHMEM
● IVSHMEM

○ Creates a shared memory segment
○ Exposes it to multiple VMs as PCI device
○ VMs can map into their address spaces

● An agent on hypervisor
○ Uses IVSHMEM
○ Divides that into chunks
○ Assigns chunks during VM initialization
○ Passes host IP to VM’s

● BPF arena

○ Builds an eBPF storage on top of IVSHMEM chunks
○ Backend for ring buffers

28/31

struct_ops for struct proto
● We already have many hooks in tcp_bpf_sendmsg() for sockmap
● Introduce a new struct proto with struct_ops for more flexibilities
● Use eBPF programs to implement all TCP socket operations:

○ ->sendmsg()
○ ->recvmsg()
○ ->poll()
○ ->close()

● tcp_sendmsg_sm(), tcp_recvmsg_sm():
○ Use ring buffers for sending/receiving packets

● Build an infrastructure possibly for Homa/SMC/MPTCP too
○ Still retain TCP socket APIs

29/31

1. Background
2. Problem statement
3. State-of-the-art
4. Proposed solution
5. Summary

Summary
Hardware
Dependency

Application
Transparency

Inter-Container
Communication

Inter-VM
Communication

Remote
Communication

Unix Domain
Socket

No No Yes (but requires
shared filesystem)

No No

Vsock No No No Yes No

RDMA Yes No No No Yes

SMC No Yes (but requires
LD_PRELOAD)

No (still regular
TCP)

No (but upstream
is working on it)

Yes

Transparent
Shared Memory
Communication

No Yes Yes Yes No

31/31

Questions?

